
1

EDA-Assisted
Hardware Verification

Designers are looking for new tools that will reduce design time and eliminate multiple hardware
prototypes. In many ways EDA tools appear to be the answer.

Unfortunately, many projects are delayed when simulation alone fails to create the perfect design.
The problem is not in the EDA tools but in the unpredictability of the physical world. Simulation to
the exclusion of physical measurements is as inefficient as the traditional design – debug – redesign
loop. Today’s design teams need tools that work together. This paper demonstrates how EDA tools
and physical measurement tools can work together to reduce the design time of your product.

2

Page 2

Objective

• Demonstrate how EDA tools and traditional

test and measurement tools can synergistically

work together to reduce the time for design

and debug by effectively combining the worlds

of simulation and physical measurement.

If you have been reading some technical publications you would start to believe that the world of
EDA tools and the world of traditional debug are mutually exclusive.

To some extent this has been true. But it doesn’t need to be. In fact today’s objective is to look at
ways of combining the strengths of both methodologies into a single strategy that will reduce the
design cycle, make more efficient use of your time and get a higher quality product to market
sooner.

3

Page 3

Goal

• Identify common problems in hardware test and

verification

• Use virtual prototyping techniques to overcome
these problems

• Compare against a “golden” simulation to verify
hardware performance

• Use a simulation environment to identify
hardware errors

Hardware test and verification is a costly and time-consuming part of the development of digital
hardware. Virtual prototyping techniques using a combination of pattern generators, logic analyzers,
and EDA software can leverage the work done during the design phase of the product, simplifying
the development of a test environment that provides good test coverage and excellent debug
capability.

In this paper we will examine problems that have limited the use of virtual prototyping and explore
simple, easy-to-use methods for overcoming these problems. We will further demonstrate additional
benefits that result when virtual prototyping techniques are combined with the analysis and
troubleshooting capabilities of a simulation environment.

4

Page 4

Agenda

• Introduction 5 min.

• Identify problems in verification
and test 25 min.

• Case Study 20 min.

• Summary 5 min.

• Questions 5 min.

TOTAL 60 min.

This presentation will last 1 hour.

5

Page 5

Common Problems in Hardware Test
and Verification

• Testing subsystems of an incomplete system

• Intermittent errors caused by timing problems
can be easily missed

• Lack of internal signal visibility

• Tedious hardware setup process

• Difficult to change test environment

Thank you Gregg. My name is Peter Menegay, and I’m an engineer with Synapticad. If you could
turn now to slide 5, I’d like to discuss some of the common problems that have traditionally plagued
engineers doing hardware test and verification. I’m sure many of you are familiar with these points,
but I’d like to do this in order to provide a launch pad for discussing our proposal for solving these
problems, or at least ameliorating them, which is built around this idea that Gregg mentioned of
virtual prototyping.

These problems generally boil down to, first of all,

(1) The need to test a subsystem before a complete version of the system is available.

(2) Detecting intermittent errors due to timing problems that don’t necessarily manifest themselves
during a given test run. This happens when timing violations exist within the circuit but they are
not manifesting themselves because of some “favorable” condition, such as temperature, or voltage
variation which suppresses the error. Hence the circuit seems to work correctly during the test, but
is really hiding a timing violation which could come out later. We would, obviously, like to know
about these kinds of violations.

(3) Difficulty with debugging because the test environment doesn’t have access to all internal circuit
nodes.

(4) Test systems that often don’t have the capability to isolate a fault to a single subsystem.

(5) The tedious setup of the hardware test environment (signal names, clock speeds, etc.) because
design-level information can’t be directly imported from EDA tools. This typically involves an
engineer sitting in front of a pattern generator and laboriously programming it, and then sitting in
front of a logic analyzer and visually trying to figure out, by looking at the waveforms, whether the
circuit is behaving properly. Needless to say, this is a tough assignment, and one which is fraught
with error.

(6) Changes to the test environment are time-consuming, especially when they involve building new

6

Page 6

What is Virtual Prototyping?

Pattern Generator
(virtual prototype)

Logic Analyzer/Timing

VHDL, Verilog, or Gate Level Simulator
Use original circuit design models in
VeriLogger or other simulator to generate
test vectors for hardware.

Prototype Circuit

Simulation Tool

Replacement of one or more subsystems in a
hardware test environment with a digital pattern
generator programmed to match the output of
those subsystems.

If you’ll turn to the next slide, slide 6,

Let’s talk about what we mean by virtual prototyping. Virtual prototyping means the combination
of the traditional test methods using a pattern generator/logic analyzer with a software simulation
tool. The traditional method consists of programming the pattern generator with test vectors for
input to the prototype circuit, and then analyzing the response of the circuit by importing it into a
logic analyzer. The EDA enhanced method is to use a simulation tool to generate the test vectors,
export them to the pattern generator, perform the test on the prototype, and then import the
response signals from the logic analyzer back into the same simulation tool. We are going to see
that the use of this software environment significantly enhances the test process by reducing the
time required to perform the work, and by increasing the quality and reliability of the results.

It is important to note here that the simulation tool is capable of generating stimulus based on a
VHDL or Verilog simulation, either done internally or imported from a third party simulator. Also,
this tool is capable of taking VHDL or Verilog testbenches and turn them into pattern generator
stimulus. Combining this with the ability to read the output of a logic or timing analyzer provides a
very powerful yet easy to use environment for hardware test and debug.

During the development of a complex digital system, individual subsystems often get prototyped at
different times. With virtual prototyping techniques, these subsystems can be tested in the absence
of other subcomponents using general-purpose programmable pattern generators to emulate the
unfinished parts of the system (in other words, the pattern generator serves as a virtual prototype).

What is the difference between Emulation and Virtual Prototyping?

Virtual Prototyping refers to faking the interface of missing components needed to test a design

7

Page 7

Benefits of Virtual Prototyping

• Reuse of simulation stimulus and response

• Early testing of subsystems

• Easier to identify bugs in isolated subsystems

• Virtual prototypes are easy to modify

• Easy to characterize speed of subsystem

Virtual prototyping solves many of the problems faced during creation of a robust hardware test
environment and provides additional debugging capabilities as well: (1) Since data has already been
generated during the design process (in simulation) this data can automatically be used as
stimulus/or to check against. (2) subsystems can be tested before the whole system is complete,
(3) subsystems can be tested in isolation to narrow down the location of bugs and simplify the
scope of the debug effort, (4) virtual prototypes can easily be modified to further debug the
subsystem under test in the event that design flaws are found in the virtual prototype or to help
study the nature of the problem with the subsystem under test, and (5) the speed performance of a
subsystem can easily be characterized by increasing the clock frequency at which the stimulus from
the virtual prototype is applied.

8

Page 8

Challenges Involved with Virtual
Prototyping of a Complex
Subsystem
1) Creation of stimulus that accurately models

output of subsystem being “replaced”

2) Programming pattern generator with enough
test vectors for good coverage

3) Verifying correct response of the subsystem
under test to applied stimulus

Virtual prototyping is not a new idea, of course, as pattern generators were created for just this
purpose, but several practical issues have limited the complexity of the systems that could be
virtually prototyped. Creating complex stimulus that accurately models the environment surrounding
a subsystem and programming the stimulus into the pattern generator have, until recently, been
engineering-intensive tasks.

An additional challenge using virtual prototypes has been to verify the response of the hardware
being tested. The response of the system being tested has to be verified in any kind of hardware
verification procedure whether using virtual prototypes or with a complete system test, but a more
thorough verification process should be used with a virtual prototypes since they don’t react to the
output of the system under test (when tested in a complete system the other subcomponents help
provide an indirect degree of test coverage since they often depend on the output of the subsystem
under test in order to perform correctly themselves).

NOTE:

Test coverage means how much of circuit we are able to test. It is applying enough different tests
to get the circuit fully checked. So if simulation performed enough tests, then automatically the
test coverage is adequate.

9

Page 9

1) Creation of Stimulus Vectors

Provide a graphical
user interface and
the ability to import
simulation vectors
to ease the task of
creating and editing
of complex
stimulus.

SynaptiCAD’s WaveFormer and VeriLogger products offer a timing diagram editing environment that
enables stimulus to be created using a combination of graphically drawn signals, timing parameters
that constrain edges, clock signals, and temporal and Boolean equations for describing complex,
quasi-repetitive signal behavior. Advanced operations on signals such as time scaling and shifting,
and block copy and pasting of signal behavior over an interval of time are also supported. This
simple, but powerful environment dramatically eases the labor associate with the generation of
complex stimulus.

Stimulus can also be created from design simulation waveforms or even from real world data
acquired by a logic analyzer. All the above-mentioned manipulations can be performed on these
waveforms as well. For example, assume a set of waveform data was gathered from a current
generation system running at 50Mhz and the new (not yet completed) system will run at 90Mhz.
The captured waveforms can be scaled to the higher speed and then converted to pattern generator
stimulus to test the completed portions of the new system.

10

Page 10

2) Test Vector Coverage

Use simulation test vectors with full
functional coverage to drive the hardware
prototyping platform.

Virtual Prototype
using test equipment

Waveform Translator
VHDL or Verilog Simulator

HDL test bench
with full functional coverage

Reuse complex stimulus vectors developed during simulation verification as hardware stimulus
vectors. This ensures that if adequate test vectors were created during simulation verification, you
will have adequate functional coverage during hardware verification.

11

Page 11

3) Verification of Hardware Response

Benefits: Reduces test development time by re-using work from the
design phase and provides a rigorous test of circuit activity instead of
“spot” checks.

Logic Analyzer

Prototype Circuit

Waveform Comparator

Simulation Waveforms

Automated
Waveform

Comparison
Report

Hardware response verification comprises two basic steps:
1) Capture waveforms from circuit using logic analyzer and import into an automated waveform comparitor.
2) Generate a comparison report against simulation results to verify circuit operation.

There are two kinds of critical comparisons between waveforms: edge-by-edge comparisons and clocked comparisons. An
edge-by-edge comparison shows every difference between the compared waveforms and is generally used when comparing
asynchronous waveforms or looking for subtle timing errors. Clocked comparisons check for waveform differences slightly
before and after clock edges. They are useful for verifying synchronous circuits because they avoid reporting differences
that result because of glitches and slight differences in delay times, events which generally don’t cause errors in a
synchronous circuit.

Negative and positive time windows can be specified around the clock edge of a clocked comparison to verify that
register and latch timing constraints are being met. This is useful in identifying potential timing errors that generate
intermittent errors that may not show up directly during hardware testing. Specifying a negative window time helps
to catch setup errors that arise when delay paths through the circuit are too long. Specifying a positive window time
helps to catch hold errors that arise when delays paths are too short. These errors often go uncaught in initial system
tests because they vary with operating conditions such as temperature and supply voltage. Using time windows to
verify stability around the clock edges, potential trouble spots can quickly be identified and investigated.
Negative and positive time windows can be specified around the clock edge of a clocked comparison to verify that
register and latch timing constraints are being met.

This is useful in identifying potential timing errors that generate intermittent errors that may not show up directly
during hardware testing. Specifying a negative window time helps to catch setup errors that arise when delay paths
through the circuit are too long. Specifying a positive window time helps to catch hold errors that arise when delay
paths are too short. These errors often go uncaught in initial system tests because they vary with operating conditions
such as temperature and supply voltage. Using time windows to verify stability around the clock edges, potential
trouble spots can quickly be identified and investigated.

12

Page 12

Automated Waveform Comparison
vs. Visual Inspection of Waveforms

1) Automated comparison is millions of times
faster than visual inspection

2) Visual inspection is subject to human error

3) Automated comparison can identify timing
trouble spots that don’t result in a visible
malfunction during testing

Traditionally, waveform data from a logic analyzer has required visual inspection by an engineer familiar with
the operation of the circuit to verify proper operation or to troubleshoot an error. This method is error-prone
and time-consuming, especially as the number of waveforms and the amount of data captured increases.
Automated comparison guarantees a rigorous check of each data point, ensuring the detection of “small
impact” errors that are easily missed during visual inspection of the waveforms.

Another problem with visual inspection of waveforms is that even when an error is spotted, there is no
guarantee that the source of the error didn’t happen earlier in the waveform data set and was simply missed
during visual inspection. This can lead to a slow hunt back in time through the waveform data to the original
divergence from correct operation. With automated comparison, the original divergence is immediately
detected, speeding the debug process.

Another important advantage of automated verification is it reduces the amount of knowledge required by the
verification engineer to test the system. Rarely does even the designer of a system keep a detailed vision of
the operation of all the signals in his design (that’s the reason for simulators), yet that is exactly the capability
needed to spot a hardware error. The simulation environment must “know” exactly how the signals should be
acting and “inspect” the waveforms, identify the faulty signal, and display the difference between the actual
response and the correct response.

13

Page 13

Identifying Hardware Errors
Using a Simulation Environment

• Introduce error “hypothesis” into simulation
model

• Compare new simulation model with circuit
waveforms to verify error diagnosis

• Detect multiple errors by repeating comparison
after each additional fault is modeled

One of the more powerful debug capabilities associated with verifying the hardware results using a
simulation environment is the ability to check that the suspected circuit fault would generate the
observed results. This can be done by adding the suspected fault to the simulation model, re-running
the simulation, and comparing the new simulation results to the captured waveforms. If the
waveforms match, the error has most likely been correctly identified. If there are still mismatches
further downstream in the waveform data, this is likely an indication that the error has been either
misidentified or that the hardware contains multiple errors. Repetition of the above process after
identifying each error can reduce the number of times the hardware needs to be changed.

14

Page 14

Other Techniques:
Generate Test Bench Stimulus

Logic Analyzer-captured waveforms can be used
to produce stimulus for simulation models.

Logic Analyzer

VHDL, Verilog, or Gate Level Simulator
Use original circuit design models in
VeriLogger Pro or other Simulator to debug
hardware errors using real world test
vectors.

Prototype Circuit

Waveform Translator

Although this talk has focused on using design data to help verify hardware, the reverse process
can also be successfully applied to the design and simulation of new systems. Most systems being
designed need to interface with already existing hardware (IC’s or entire boards) and simulation
models are frequently not available for that hardware. Waveforms from the existing hardware need
to be captured with a logic analyzer and converted to HDL test bench code or SPICE stimulus.

Let me give you a quick example of a customer who has used this technique. A customer from
Microwave Data Systems was testing an ASIC design in which he needed to generate stimulus.
Instead of programming these manually into his VHDL simulator he simply captured output from his
upstream components using the simulation software tool(which he had), fed them into a VHDL
simulator which he had programmed, and produced the needed stimulus for output to his new
design. He reported that the process took about 15 minutes rather than an estimated 2 weeks.
This is a real world example from a customer, who without any prompting by us, volunteered this
information. Needless to say, these new techniques for testing are going to provide a real
productivity boost.

15

Page 15

Other Techniques:
Bus-Functional Model Generation
Logic Analyzer captured waveforms can be used to

develop bus functional simulation models.

Test Bench Sequencer
(top-level test bench)

Transaction Read Cycle

Transaction Write Cycle

Status and Trigger process

Main Test Vector process

User’s
Design
Model
(MUT)

Structure of a Test Bench

Existing HardwareLogic Analyzer

Another feature is the ability to verify that a system being designed can work with an existing piece
of hardware. In this case, we use the logic analyzer to capture data from the existing system,
where it can be imported into a test bench generation tool where we can massage the waveforms
to create a reactive, bus functional model of the existing system. We then use this model to
stimulate the simulation model of our new design and to verify it’s response. This approach is
similar to the technique on the previous slide, but in this case we break up the captured data into
reusable “transactions”. You can then control the order in which these transactions are applied to
your model under test with function calls in the top-level of your test bench. An example of a
transaction would be a write cycle or a read cycle by a microprocessor. These transactions can be
parameterized in the testbench generation tool by replacing specific data values with variables
which can be passed in when you call transaction function call.

When simulating a design using an HDL language, the waveforms should be converted
directly to test vectors or used as a starting point by the designer for the creation of a
reactive, bus functional model capable of checking and responding to the output of the
system being simulated.

16

Page 16

Other Techniques:
Interface Functional Checking

Compare waveforms from “known good”
hardware against next generation model

Logic Analyzer

Known Good Hardware

Waveform Comparator

Simulation Model of
New System

Comparison
Report

Often the system being designed is the next generation of an existing product with similar
functionality. In this case, the new system must generally mimic at least part of the interface of the
older system. By performing a waveform comparison between the old system and the new design,
correct functioning of the new system can be assured.

17

Page 17

Document Cause-Effect Relationships

It is important to document circuit operation by converting captured waveform data into true timing
diagrams. The user can add delay, setup, and hold timing parameters to document the temporal
relationships between signal transitions. Finally, improvements to the readability of timing diagrams
can be obtained by adding text and grid lines. When the timing diagram is complete, WaveFormer
Pro can create publication quality WMF, MIF or EPS images for use in Word, FrameMaker or PDF
files.

18

Page 18

Other Techniques:
Continuous Setup and Hold
Checking

• Perform a post analysis of the circuit

waveforms to check for setup and hold

violations. Perform a check on each clock

edge and generate a time-ordered report of

violations of the timing constraints entered by

the user.

The simulation environment should be able to generate a report of ALL setup and hold timing
violations specified between any two signals in a timing diagram regardless of whether the signal is
a captured waveform or a simulated waveform (logic analyzers typically only flag the first
violation).

Setup and hold time violations in ASICs and PLDs are particularly troublesome because
timing violations usually occur on flip-flop inputs that are not directly available at device
pins, but are instead a logical function of the device’s inputs. Using conventional
debugging techniques, these timing violations are extremely difficult to catch because they
cannot be directly measured. WaveFormer’s ability to simulate internal signals makes it
simple to detect timing violations between signals buried inside a chip.

19

Page 19

Other Techniques:
Visualize Internal Signals
Calculate behavior of internal signal nodes to

help troubleshoot a hardware problem

Logic Analyzer

Use built-in interactive simulation engine to simulate
registered logic equations like those used in FPGAs or
CPLDs.

FPGA with hidden internal nodes

Waveform Translator

One of the most frustrating problems encountered when debugging a circuit is the inability to see
what is happening on all the internal signal nodes of an FPGA or ASIC. A logic analyzer can only
show the activity on signals that are brought out on device pins. Unfortunately, many designs are
I/O limited. Even when there are no limitations, there are almost never enough pins available to bring
out all the useful nodes.

To combat this problem, use a built-in interactive simulation engine that can simulate registered
logic equations like those used in FPGAs or CPLDs. By combining this capability with data captured
by a logic analyzer, users can determine what is happening not only at the pins of their devices, but
also on the internal nodes that cannot be directly probed. This dramatically simplifies the debug
process by allowing a designer to effectively trace into a chip to locate the source of the problem.

20

Page 20

Agenda

• Introduction 5 min.

• Identify problems in verification
and test 25 min.

• Case Study 20 min.

• Summary 5 min.

• Questions 5 min.

TOTAL 60 min.

If you’ll turn now to slide 20, this concludes this part of the presentation where I’ve detailed some
of the problems with hardware test and verification and proposed a solution based on the
combination of EDA software and the traditional methods. I’d like to emphasize that what we’ve
done here is replaced a difficult to modify hardware test environment with an easy to modify
software environment, without sacrificing the “realness”, if you will, of hardware testing. Now I’d
like to turn it back over to Gregg who’s going to provide us with a case study so you can see an
example of how these ideas I’ve been talking about really work.

21

Page 21

Case Study of Virtual
Prototyping

To better understand the processes described in this paper the following case study is provided.

A circuit design will be developed using SynaptiCAD and Xilinx design tools. The design will then be
downloaded onto an Associated Professional Systems X240 development board. This board uses a
Spartan XS30 FPGA and 256K of SRAM. An Agilent Technologies 16522A pattern generator will
provide stimulus to the device under test and the results will be measured with an Agilent
Technologies 16717A timing analyzer. The results will then be uploaded to the SynaptiCAD
simulator and the results will be automatically compared.

22

Page 22

Histogram Example

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Number of Hits for each Bin

Bin 0

Bin 1

Bin 2

Bin 3

Bin 4

Series1

Circuit being designed counts the number of occurrences
of a particular piece of data. Each count is stored in the
SRAM.

As an example application of the use of a virtual prototype, we will examine the design and debug
of a histogram circuit that is used for A/C performance testing of analog-to-digital converters. The
histogram circuit counts the occurrences of 12-bit values received from the Analog to Digital
Converter (ADC). These “bin” counts can be graphed on a bar chart to show the relative frequency
of occurrence of each data value (a histogram chart).

23

Page 23

Block Diagram of Histogram

DATA
ENABLE

A/D Converter
CLOCK

COUNT OUTPUT
ENABLE

4bit COUNTER
CLOCK

CLOCK / 2

READ

WRITE

State Machine

IDLE

READ

WRITE

START

START

DONE

DONE

DATA
R/Wbar

Two 4k x 8 bit SRAMS
CSB

ADDR

DBUS_INC[15:0]

DBUS[15:0]

Increment and Latch

Tristate Gates

ENABLE

DONE

COUNT[3:0]

START

CLOCK

ADDR[11:0]

RESET

The histogram circuit is composed of three subsystems: the ADC which generates the data to be
histogrammed, the data path circuit that stores and increments the bin count for each value, and
the state machine that generates the control signals for the data path circuit.

In this design the ADC will not be created. Instead the Agilent Technologies pattern generator will
provide test vectors to simulate the 12 bit output. The purpose in not creating the ADC is to
demonstrate that when part of a design is not available it is still possible to test and debug the
design. This not only saves time, but by testing smaller pieces it becomes easier to find problems
when they do occur.

24

Page 24

Histogram State Diagram

State Machine Equations

IDLE := (WRITE & DONE) | (~START & IDLE)

READ := (IDLE & START) | (WRITE & ~DONE)

WRITE := READ

State Machine Inputs

DONE = &COUNT //Outputs true when all bits of counter are high

START //Controls signal to start SM (assumed sync)

State Machine Outputs (other than states themselves)

ENABLE = READ | WRITE //Enable line for controlled devices

RESET

IDLE

READ

WRITE

START

START

DONE

DONE

Note: All flip-flops are negative edge-triggered by CLK0. The notation := means
clocked. The notation = means unclocked.

The equations that describe the circuit were converted to a Verilog model of the circuit for
verification inside VeriLogger’s simulation environment.

WaveFormer and VeriLogger can import simulation waveforms from other simulation environments,
so the next several steps could also be performed using a third party simulator which can export to
a waveform format such as Value Change Dump (VCD files).

25

Page 25

Virtual Prototyping Steps

• Create waveforms to program pattern

generator

• Run simulation and save waveforms

• Test hardware and capture timing waveforms

• Compare timing waveforms against simulated

waveforms

• Identify errors and model suspected faults

For this case study we followed these basic steps to find out if the design would perform as expected.

•We used the timing diagram editor in VeriLogger Pro to create the ADC waveforms for the input to the
physical circuit

•We ran the simulation and verified that the design worked.

•Next the timing waveforms were converted to patterns for the pattern generator.

•Now the pattern generator provides input to the histogram circuit on the FPGA and the Agilent timing analyzer
captures the data.

•The real timing behavior of the design is loaded into the SynaptiCAD Verilogger Pro and a comparison is made
between the simulation and the real-world results. The tool automatically makes the comparisons and identifies
differences.

•Let's take a look at each step

26

Page 26

Create waveforms to program pattern generator

•In VeriLogger Pro, load the project containing the simulation models and test benches.

• Click on the “Build Active project” icon and then click the “Run Simulation” icon. VeriLogger Pro
will take the Verilog design files and simulate the design.

• Use the “Export” menu functions to export the simulation waveforms to a file that can be read by
the Agilent Technologies Pattern Generator.

27

Page 27

Use waveforms to program pattern generator

•Transfer the stimulus file to the pattern generator. Note, that the signal names in the pattern
generator automatically match those in the simulator.

•The file was transferred over the Lan. It’s interesting to note that the logic analyzer can mount
the C drive on the PC as its disk drive so the analyzer can just load the file from the C drive. This
saves having to even to a file transfer.

28

Page 28

Create waveforms to program pattern generator

Run and capture timing waveform output

•Run the pattern generator to provide stimulus to the Xilinx Spartan XCS30 FPGA. The pattern
generator is simulating a missing ADC and the missing control logic circuit.

• Use the timing analyzer in the logic analyzer to capture the output data of the histogram circuit.

29

Page 29

White is actual

Blue is Simulation

Compare timing waveforms against simulated waveforms

•Use file compare in VeriLogger. This tool will interleave the simulation waveforms with the actual
waveforms and then highlight in red any waveform areas that don’t match.

•We can quickly see that simulation and real-time measurements don’t match. There is a problem.

30

Page 30

Identify errors, fix design errors and rerun tests

•After fixing the design error we rerun the simulation and real-time measurements and compare
them again. This time the data is what we expect.

•One other interesting thing to note is if you look carefully at the data buses you notice that the
simulator expected to see an FF between each change in the data. The timing analyzer did not
record that in the actual circuit.

•The reason is that the circuit is active low and the simulator was set so that the RC time
constant for the pull up resistors was 0. But the actual circuit design had a fairly large pull
up resistor and took some time. So the bus never had a chance to reach FF before the next
clock cycle.

•In this case this had no effect on the operation of the circuit. However, in other cases
this could create major problems or worse those really nasty intermittent ones.

•By combining simulation, physical stimulus, and real-time measurements you can quickly
determine if:

1. The circuit design will work even when not all parts of the prototype board are
available.

2. That the expected simulation behavior matches the physical results.

31

Page 31

Agenda

• Introduction 5 min.

• Identify problems in verification
and test 25 min.

• Case Study 20 min.

• Summary 5 min.

• Questions 5 min.

TOTAL 60 min.

.

32

Page 32

Summary - Tightening The
Development Process

Move from 2 separate areas of
development to a single
design cycle.

Compare test results against
simulation data to simplify
hardware verification.

Link simulation/hardware test
environments to ease
hardware debug efforts.

Create robust, easily
modifiable test environments
using virtual prototyping.

Simulation
World

Physical
World

It is now possible to combine the power of EDA tools with test equipment to change the design
cycle from four separate area of development into a single coordinated design cycle.

By bringing the worlds of simulation and hardware test closer it is possible to reduce design time
and eliminate multiple hardware prototypes. No longer do projects have to be delayed when
simulation alone fails to create the perfect design.

Robust test environments and even VHDL testbenches can be built quickly and efficiently using
virtual prototyping. By comparing physical test results against simulation data engineers can
eliminate days of tedious analysis.

By using SynaptiCAD’s WaveFormer Pro tools and Agilent Technologies’s logic analyzers the worlds
of EDA tools and physical measurements are brought together to reduce design time, eliminate
multiple prototypes and get your next design to market faster.

33

Page 33

Recommended Resources
• SynaptiCAD Inc. at www.syncad.com

• WaveFormer Pro - import and export
stimulus vectors to pattern generators
and logic analyzers

• Reads/Writes VHDL, Verilog, SPICE and
43 different file formats.

• VeriLogger Pro - adds simulation and
automated waveform comparison
features

• TestBencher Pro - creates VHDL and
Verilog bus-functional models from
timing diagrams

If you’ll turn now to slide 33, let me run you through some of the resources we recommend for EDA
assisted hardware verification. We’re Synapticad, so I’d like to give you a brief description of our
major products. As I mentioned earlier these are full CAD tools that can completely describe timing
relationships in your digital circuits.

SynaptiCAD has three tools that support the Agilent Technologies Virtual Prototyping features.
WaveFormer Pro can import and export stimulus vectors to Agilent Technologies Pattern
Generators, Agilent Technologies Logic Analyzers, VHDL, Verilog, SPICE, and 43 different formats.
VeriLogger Pro contains the import/export features of WaveFormer in addition to the automated
waveform comparison features. TestBencher Pro in turn contains all of the features of WaveFormer
and VeriLogger in addition to being able to create VHDL and Verilog Bus-functional models from
timing diagrams.

Let me now turn it over to Gregg, who’ll describe some of the Agilent resources.

34

Page 34

Recommended Resources (cont.)
• Agilent Technologies at www.agilent.com

• To access a variety of application notes go
to Agilent’s Digital Design Center
www.agilent.com/find/ddc

• Agilent 16700A Logic Analysis Series

• 16522A pattern generator with 200
Msa/sec data rate and 256K vectors

• State/Timing modules up to 333MHz state
and 2GHz timing with 32M of acquisition
memory

SynaptiCAD has three tools that support the Agilent Technologies Virtual Prototyping features.
WaveFormer Pro can import and export stimulus vectors to Agilent Technologies Pattern
Generators, Agilent Technologies Logic Analyzers, VHDL, Verilog, SPICE, and 43 different formats.
VeriLogger Pro contains the import/export features of WaveFormer in addition to the automated
waveform comparison features. TestBencher Pro in turn contains all of the features of WaveFormer
and VeriLogger in addition to being able to create VHDL and Verilog Bus-functional models from
timing diagrams.

Agilent Technologies make a variety of Pattern Generators and Logic Analyzers. SynaptiCAD’s tools
supports almost the entire line of equipment.

35

Don’t forget to fill out your survey to enter in
the drawing for a Palm Pilot.

Question and Answer Time

